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PROBLEM SET 5

1.
Griffiths Problem 4.28.

2.

In vacuum a large number of nonrelativistic par-
ticles, all with the same |charge| e and mass m,
are created at the origin. Further, all particles
have the same nonzero initial z component of
velocity, v,g. Their other initial velocity compo-
nents vary randomly. The vacuum is filled with
a uniform magnetic field B = ByZ. Show that all
particles pass through at least one common co-
ordinate (x,y, z) other than the origin, and find
that coordinate.

[This focussing property of solenoidal magnetic
fields is widely used to create intense beams of
charged particles, particularly muons.]

3.
Griffiths’ Ex. 5.2 obtains a cycloid solution for
motion in crossed electric and magnetic fields
using the Lorentz force law in the laboratory
frame. Please read it. Then solve the same
problem using a more elegant approach:

(a)

Nonrelativistically, if frame S’ moves with veloc-
ity Be with respect to (laboratory) frame S, the
Galilei transformation for electric fields is

E'=E+(xcB.
Taking B along = and E along Z, as in the
problem, and assuming £ < ¢B in magnitude,
choose the simplest 3 so that E’ vanishes.
(b.)
The two frames coincide at t = 0. Using the
Galilei transformation for velocities, if the par-
ticle is at rest at ¢ = 0 in frame S, what is its
initial velocity in frame 8’7

(c.)

The Galilei transformation for magnetic fields is
B’ =B FxE.

Because F <« ¢B and < 1, approximate B’ to
be essentially the same as B. In frame S’, solve

for the motion of the particle.

(d)

Using the Galilei transformation for positions,
determine the motion in the lab frame S.

4.

Consider a beam of charged particles with mo-
mentum P = pgZ and fundamental charge e,
incident normally on a “bending magnet”. In a
region 0 < z < D, the field of this magnet may
be approximated to be uniform, B = Byy; out-
side that region, in the path of the beam, it may
be approximated to vanish.

Show that a bending magnet imparts a fixed
transverse momentum p, = pr to every particle,
regardless of its initial momentum pg, so long as
the particle is able to pass through the magnet.
For By = 1 Tesla and D = 1 meter, what is pr
in GeV/c?

5.
Consider Ampere’s law in vacuum, as modified
by Maxwell:
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Taking the divergence of this equation, and ap-
plying Gauss’s law, prove that electric charge is
conserved (Griffiths Eq. 5.29). [Therefore, elec-
tric charge conservation is tied fundamentally to
the structure of Maxwell’s equations; observing
the tiniest electric charge nonconservation would
completely invalidate the theory.]

6.

A Helmholtz coil consists of two circular coils
of radius b, each carrying current I in the same
sense. The coils are centered on the z axis,
parallel to the z = 0 plane, and are located at
z = ta/2.



(a.)
Show that all the odd derivatives
d" B,
dzm

,n=1305...

vanish at the origin.

(b.)

Find a (in terms of b) such that

B,
dz2

at the origin.

(c.)

Helmholtz coils often are used in the lab to can-
cel out the Earth’s magnetic field, or to produce
a small region of uniform magnetic field in which
experiments may be carried out. Along the
z axis, suppose that your experiment requires
B, = 0.01 T with an error of < 0.1% over a dis-
tance Az = 0.01 m. Using an n < 4 Taylor series
expansion, estimate the minimum coil radius b
that is needed. Given b, calculate the current [
that is required.

7.

Consider two loops of wire, each carrying cur-
rent I. The first is a circle of radius b in the
z = 0 plane, centered on the z axis. The second
is a square of side 2b, also in the z = 0 plane and
centered on the z axis.

The magnetic dipole moment m of a plane wire
loop carrying current I is equal to Ia, where
la| is the loop’s area and @ is the normal to its
plane (the ambiguity in a is resolved by apply-
ing the right-hand rule to the current direction).
Far from magnetic dipoles, their magnetic fields
drop like =3 (as do electric fields far from elec-
tric dipoles).

(a.)

For either of these wire loops, use Ampere’s law
to show that
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where the integral is taken along the z axis.

(b.)

When z > b, which loop produces the larger

| B:[?

(c.)

When z is not > b, which loop produces the
larger |B,|? (You may perform a calculation or
you may provide a cogent argument.)



